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Abstract. Results of a neutron diffraction study on powder samples of FeNb2O6 and NiNb2O6

at 1.3 K and on a single crystal of flux-grown FeNb2O6 at 1.5 K are given. The magnetization
and susceptibility of single crystals have been measured for both compounds from 2.0 K to
room temperature. In addition a M̈ossbauer spectrum of FeNb2O6 was taken at 4.2 K, and the
specific heat of NiNb2O6 has been measured from 0.5 K up to 25 K. FeNb2O6 and NiNb2O6

exhibit antiferromagnetic order below 4.9 K and 5.7 K, respectively, with a canted magnetic
structure. The powder samples reveal two propagation vectors,(0 1

2 0), and ( 1
2

1
2 0), for

FeNb2O6 as well as for NiNb2O6. The magnetization measurements are interpreted in the
mean-field approximation by taking the crystal field, spin–orbit coupling, isotropic Heisenberg
exchange, magnetic dipole–dipole interaction and an external field into account. Within this
model very good agreement between theory and experiment was obtained. By reproducing the
antiferromagnetic–paramagnetic phase transitions with an applied external field parallel to thea-
or c-direction an estimation of the effective exchange interaction between zigzag chains running
along thec-direction is given. The magnetic structures, as derived from model considerations,
agree with neutron diffraction results.

1. Introduction

The transition metal niobates MNb2O6 (M = Ni, Co, Fe, Mn) and MnTa2O6 crystallize
in the columbite structure [1]. This crystal structure consists of layers of slightly distorted
hexagonal-closed-packed oxygen octahedra perpendicular to thea-axis. Within eachb–c

layer, octahedra filled with cations are aligned in zigzag chains running along thec-axis
with common edges. From layer to layer the cations within the octahedra alternate in the
sequence M–Nb–Nb–M–Nb–Nb–M. The space group isPbcn (D14

2h).
The antiferromagnetic structures of MnNb2O6 [2–4], CoNb2O6 [5] and MnTa2O6 [3]

have been studied previously by neutron diffraction studies of single crystals. Powder
diffraction studies have also been performed on FeNb2O6 [2] and NiNb2O6 [6]. The
results are collinear magnetic structures with propagation vectors (01

2 0). No deviation
from a collinear structure could be detected. Magnetization studies and group theoretical
considerations [7, 8] gave later evidence of such non-collinear canted magnetic structures
for FeNb2O6 and NiNb2O6. In this paper we report on new neutron diffraction studies on
powder and single-crystal samples, and specific heat measurements as well as theoretical
and experimental magnetization studies on single crystals.

‖ Present address: Brookhaven National Laboratory, Upton, NY 11973, USA.
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Figure 1. Observed and calculated diffraction patterns at 1.3 K for FeNb2O6. The first line of
tick marks belong to magnetic reflections for the propagation vector (01

2 0), the second to those
for ( 1

2
1
2 0) and the third to the nuclear reflections.
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Figure 2. Observed and calculated diffraction patterns at 1.3 K for NiNb2O6. The first line
of tick marks belong to magnetic reflections for the propagation vector (1

2
1
2 0), the second to

those for (01
2 0) and the third to the nuclear reflections. The inset shows the strongly broadened

Lorentzian-shaped (112 0) reflection.
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Section 2 describes the experiments, section 3 provides the results from the neutron
diffraction study and a specific heat measurement. In section 4 a theoretical calculation of
the magnetic properties is given. In contrast to the publications mentioned above [7, 8]
which were based on effective spin Hamiltonians, in this work the degrees of freedom of
the orbital angular momentum are explicitly taken into account. The results are finally
summarized in section 5.

2. Experimental procedure

The FeNb2O6 and NiNb2O6 powders were synthesized by standard subsolidus reactions
[9]. The neutron powder diffraction experiments were performed at the D1B diffractometer
of the ILL. The data were collected at a wavelength ofλ = 2.5293 Å in an angular
range 5◦ 6 22 6 85◦ in steps of 0.2◦ and in a temperature range from 1.3 K to room
temperature. The patterns taken at 1.3 K are shown in figures 1 and 2. For the refinement
of the magnetic structures the programFULLPROF [10] was applied. In addition to aλ/2
contribution of 0.11% and reflections of the vanadium container, a solid nitrogen impurity
in the FeNb2O6 sample was detected and included in the refinement.

In order to confirm the powder diffraction results, further neutron diffraction experiments
on a flux-grown crystal [11] of FeNb2O6 were carried out. The crystal dimensions were
2×3×6 mm3. The measurements were performed on the DN3 normal-beam instrument of
the reactor SILÖE at the CEN Grenoble with a wavelength of 1.54 Å at 1.6 K. An extinction
correction following Becker and Coppens [12] was carried out, and for the refinement the
programMINREF [13] was used.

Figure 3. The observed and calculated Mössbauer spectra of FeNb2O6 at 4.2 K.

Mössbauer spectra of FeNb2O6, taken at 4.2 K and 77 K, were recorded by a
conventional mechanical drive, synchronized with a multichannel analyser operating in time
mode; see figure 3.

The specific heat of a NiNb2O6 single crystal was measured with an adiabatic heating
calorimeter without field in the temperature range from 0.3 to 25 K; see figure 4.

The field-induced magnetization and susceptibility of the single crystals were measured
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Figure 4. The specific heat of NiNb2O6. The solid line gives the theoretical prediction for
a ferromagneticS = 1 Heisenberg chain with uniaxial single-ion anisotropy. The dashed line
gives the lattice contribution.
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Figure 5. Magnetic susceptibilities of FeNb2O6 along the crystallographic axesa, b andc. The
lines give the results of refinement.
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Figure 6. Magnetic susceptibilities of NiNb2O6 along the crystallographic axesa, b andc. The
lines give the results of refinement.
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Figure 7. The magnetization of FeNb2O6 along the crystallographic axesa andc measured at
2.0 K. The lines give the results of refinement.
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Figure 8. The magnetization of NiNb2O6 along the crystallographic axesa, b andc measured
at 2.0 K. The lines give the results of refinement.

from 2 K to room temperature with a SQUID magnetometer (QUANTUM DESIGN).
‘Susceptibility’ here denotes the slope of the magnetization, which depends linearly on
the applied field strength up to 100 G in the temperature range under consideration (figures
5 and 6). The field-dependent magnetizations were measured at 2.0 K and are shown in
figures 7 and 8.

3. Results and discussion

The temperature-dependent powder diffraction experiments revealed antiferromagnetic order
at 4.9 K and 5.7 K for FeNb2O6 and NiNb2O6 respectively. In addition to reflections with
the propagation vector(0 1

2 0) [2, 6] we found further magnetic reflections, which could
be indexed by a propagation vector( 1

2
1
2 0); see figures 1 and 2. No change in the

intensity of the nuclear reflections was observed. In FeNb2O6 the reflections belonging to
the propagation vector (012 0) are more intense than those belonging to (1

2
1
2 0), whereas

for NiNb2O6 the opposite was observed. As the most intense reflections,(0 1
2 0) and

( 1
2

1
2 0), corresponding to the two propagation vectors lie close together, they could not

be separated in previous experiments due to the low resolution and the short wavelength
used. Furthermore the reflections in NiNb2O6 belonging to the propagation vector(0 1

2 0)

have a Lorentzian shape with increasing broadening for increasing 22, indicating magnetic
stacking faults presumably in the crystallographica-direction. Nevertheless the reflections
of the two propagation vectors seem to appear at the same temperature in the two compounds
(figure 9).

We propose two alternative models: either both compounds order in a magnetic structure
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Figure 9. The temperature dependence of the intensities of some representative reflections in
FeNb2O6 and NiNb2O6. Solid lines are guides to the eye.

with a fourfold unit cell and cell dimensions 2a × 2b × c which gives rise to the two
propagation vectors, or two different magnetic domains exist in these compounds where
each one results in only one propagation vector.

Attempts were made to fit the FeNb2O6 data to several models consistent with a fourfold
magnetic unit cell. As no magnetic contributions to the nuclear peaks were observed,
we were restricted to models with a translation symmetry according to the two observed
propagation vectors. With the constraint that all magnetic sites have to be magnetically
equivalent, no satisfactory fits were obtained. The only way to achieve reasonable agreement
was to allow different absolute-moment values and different moment directions for Fe
positions equivalent in the crystal structure.

In order to check this assumption, a Mössbauer spectrum at 4.2 K for FeNb2O6 powder
was recorded, as magnetically different positions should result in different local hyperfine
fields at the57Fe nuclei. The M̈ossbauer spectrum is very well reproduced by one set
of parameters, with the asymmetry parameterη fixed to zero (figure 3). We found the
angle2 = 19.2 ± 0.5◦ between the direction of the hyperfine field and the principal axis
of the electric field gradient at the iron nucleus. The quadrupole splitting1

2e2qQ was
−2.36± 0.01 mm s−1, the hyperfine fieldHhf was 32.5 ± 0.1 kOe and the isomer shift IS
relative toα-iron at room temperature was 1.26±0.01 mm s−1. These results are consistent
with a previous experiment [14], but with smaller experimental errors.

Based on these results, the model with different magnetic positions has to be
excluded. We therefore conclude that domains exist with two different magnetic structures
corresponding to the two propagation vectors(0 1

2 0) and ( 1
2

1
2 0) in FeNb2O6. For the

calculation of the absolute magnetic moment we assume the same value in the two domains.
An FxCz-arrangement [5] with a canting angle of 23◦ to thea-axis and a moment of 4.5µB

was determined for FeNb2O6 at 1.3 K.
For NiNb2O6 we make the same assumption. But the reflections, according to the
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Table 1. Atomic parameters for FeNb2O6 at 1.3 K obtained by powder diffraction;a =
14.2367(16) Å, b = 5.7322(3) Å, c = 5.0433(3) Å, λ = 2.5293Å, space group= Pbcn.

Atom x y z

Fe 0 0.1657(12) 0.25
Nb 0.1632(6) 0.3199(10) 0.7509(25)
O(1) 0.0985(7) 0.3988(17) 0.4303(15)
O(2) 0.0817(6) 0.1182(19) 0.8952(15)
O(3) 0.2542(7) 0.1273(23) 0.5758(12)

Table 2. Atomic parameters for NiNb2O6 at 1.3 K obtained by powder diffraction;a =
14.0140(19) Å, b = 5.6825(3) Å, c = 5.0244(3) Å, λ = 2.5293Å, space group= Pbcn.

Atom x y z

Ni 0 0.1602(9) 0.25
Nb 0.1591(3) 0.3215(7) 0.7468(26)
O(1) 0.0949(5) 0.3888(15) 0.4282(11)
O(2) 0.0787(4) 0.1081(16) 0.9046(10)
O(3) 0.2550(5) 0.1269(20) 0.5788(9)

Table 3. Magnetic moments of FeNb2O6 and NiNb2O6 at 1.3 K in the unit cell and the volume
fractions of the domains obtained by powder diffraction.

Atom M (FeNb2O6) M (NiNb2O6)

(0 y 1
4) (1.82 0.0 4.15) (1.32 0.0 2.03)

(0 y 3
4) (1.82 0.0 4.15) (1.32 0.0 2.03)

( 1
2

1
2 − y 3

4) (1.82 0.0−4.15) (1.32 0.0−2.03)

( 1
2

1
2 + y 1

4) (1.82 0.0−4.15) (1.32 0.0−2.03)

(0 1
2 0) 91% 21%

( 1
2 ± 1

2 0) 9% 79%

propagation vector (012 0), cannot be included for refinement due to line broadening and
the Lorentzian shape. Therefore we only adjusted the intensity of the (01

2 0) reflection
to obtain an approximate value of the absolute magnetic moment under the assumption of
equal values in the two domains and the same canting angle as in the (1

2
1
2 0) domain. We

also found anFxCz-arrangement with a canting angle of 31◦ to the c-axis and a moment
of 2.4 µB . The results of the refinement using powder data are given in tables 1–3. The
observed and calculated diffraction patterns are shown in figures 1 and 2. The structures
in both compounds related to the two propagation vectors agree with group theoretical
considerations restricted to a Hamiltonian bilinear in the spin part. For the propagation
vector (0 1

2 0) this was shown by Yaegeret al [8] and it can readily be transferred to the
propagation vector (12

1
2 0).

To confirm our interpretation of the powder diffraction experiments we carried out a
single-crystal experiment on FeNb2O6. The result of the refinement with the same domain
model is given in tables 4 and 5. A different ratio of domains was observed for the single
crystal, which confirms the domain model. The magnetic moment of 4.5µB and a canting
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Table 4. Magnetic moments of FeNb2O6 at 1.6 K in the unit cell and the volume fractions of
the domains obtained by single-crystal diffraction.

Atom M

(0 y 1
4) (1.85 0.0 4.06)

(0 y 3
4) (1.85 0.0 4.06)

( 1
2

1
2 − y 3

4) (1.85 0.0−4.06)

( 1
2

1
2 + y 1

4) (1.85 0.0−4.06)

(0 1
2 0) 99.6%

( 1
2

1
2 0) 0.2%

( 1
2 − 1

2 0) 0.2%

angle of 24◦ to thea-axis are in excellent agreement with the powder experiment.
The canting angles in these non-collinear magnetic structures are due to single-ion an-

isotropy of the M2+ ions which arises from the octahedral environment of the oxygen atoms.
Thus the magnetic moment direction follows mainly the orientation of the oxygen octahedra.
In FeWO4 and NiWO4 [15], with similar structures and with a similar orientation of oxygen
octahedra relative to the cell axes, the moment directions are almost identical to those in our
case. A canting angle of 27◦ to thea-axis was found in FeWO4, and in NiWO4 a canting
angle of 32◦ relative to thec-axis was found.
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Figure 10. Projections of the two types of magnetic domain structure in FeNb2O6 onto the
a–b plane. (a) shows the (012 0) structure, and (b) one of the two possibilities for the (1

2
1
2 0)

structure. Solid lines give the magnetic elementary cell, dotted lines the nuclear one. Circles
symbolize ions belonging to the same ferromagnetic zigzag chain, plus and minus signs indicate
the orientation of the moments.J1 andJ2 denote the effective interchain exchange.

In FeNb2O6 and NiNb2O6 the situation is similar to that for the isostructural compound
CoNb2O6 [5] below 1.95 K. We find the sameFxCz-arrangement of the moments indicating
the same ferromagnetic zigzag chains along thec-direction. The intrachain coupling is
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Table 5. Observed and calculated magnetic intensities of the FeNb2O6 single-crystal experiment
at 1.5 K.R = 0.048.

h k l F 2
calc F 2

obs h k l F 2
calc F 2

obs

0 1/2 0 354 343 1 1/2 0 236 241
1 −1/2 0 236 252 2 1/2 0 137 143
2 −1/2 0 137 151 0 1/2 1 87.4 87.7
0 1/2 1 87.4 90.4 0 −1/2 1 87.4 88.9
0 −1/2 1 87.4 75.2 −1 1/2 1 80.3 88.8
1 1/2 1 80.3 80.1 1 1/2 1 80.3 81.3
1 −1/2 1 80.3 80.3 3 1/2 0 96.2 99.4
3 −1/2 0 96.2 101 2 1/2 1 65.3 65.6
2 −1/2 1 65.3 69.3 0 3/2 0 1.0 0.8
0 −3/2 0 1.0 0.6 1 3/2 0 1.0 0.4

−1 3/2 0 1.0 0.3 −1 −3/2 0 1.0 0.1
1 −3/2 0 1.0 0.3 4 1/2 0 77.5 71.1
4 −1/2 0 77.5 71.7 2 3/2 0 0.8 0.6

−2 3/2 0 0.8 0.8 2 −3/2 0 0.8 0.7
−2 −3/2 0 0.8 0.5 3 1/2 1 51.1 50.2

3 −1/2 1 51.1 51.6 4 1/2 1 40.4 36.9
4 1/2 1 40.4 36.9 4 −1/2 1 40.4 38.7
1/2 1/2 0 1.1 1.1 −1/2 1/2 0 1.0 0.9
1/2 −1/2 0 1.0 1.1 −1/2 −1/2 0 1.1 1.1
3/2 1/2 0 0.9 0.8 −3/2 1/2 0 0.9 1.0
3/2 −1/2 0 0.9 1.1 −3/2 −1/2 0 0.9 0.9
5/2 1/2 0 0.4 0.5 −5/2 1/2 0 0.4 0.5
5/2 −1/2 0 0.4 0.4 −5/2 −1/2 0 0.4 0.5
1/2 1/2 1 0.3 0.3 1/2−1/2 1 0.3 0.3
3/2 1/2 1 0.4 0.3 3/2−1/2 1 0.4 0.4
7/2 1/2 0 0.3 0.1 7/2−1/2 0 0.3 0.5

−7/2 1/2 0 0.3 0.5 −7/2 −1/2 0 0.3 0.2
1/2 3/2 0 0 0.2 −1/2 3/2 0 0 0.1
1/2 −3/2 0 0 0.1 −1/2 −3/2 0 0 0
5/2 1/2 1 0.2 0.1 5/2−1/2 1 0.2 0.1
7/2 1/2 1 0.1 0 7/2−1/2 1 0.2 0.4
1/2 3/2 1 1.2 1.0 1/2−3/2 1 1.3 1.1
3/2 3/2 1 1.9 1.5 3/2−3/2 1 1.9 2.0
5/2 3/2 1 1.0 1.0 −5/2 3/2 1 1.0 0.9
9/2 1/2 1 0.6 0.2 9/2 1/2 1 0.6 0.2
9/2 −1/2 1 0.6 0.6 9/2 −1/2 1 0.6 0.1

11/2 1/2 0 0.2 0.3 11/2−1/2 0 0.2 0.2

based on 90◦ superexchange, whereas interchain coupling has to overcome at least four
bond lengths for chains in the sameb–c layer and six bond lengths to chains in other layers.
Therefore the coupling in the chains is assumed to be ferromagnetic and considerably
stronger than the interchain exchange. The coupling between the ferromagnetic chains in
theb-direction is thus antiferromagnetic. For the succession in thea-direction three possible
stacking schemes exist and give rise to the two observed propagation vectors (figure 10).
Neglecting the exchange interaction with moments in the next-nearest layer of magnetic
ions, separated by the distance of the lattice parametera, the exchange energies in the two
cases are exactly the same. As the exchange interaction over 14Å (this is more than 12
bonds) is negligible and the dipole–dipole interaction has no preference for one possibility,
frustration results. Already dislocations, causing local strain or surface effects, could prefer
one or the other stacking scheme and produce domains. Thus in the FeNb2O6 single crystal



Magnetism in FeNb2O6 and NiNb2O6 10619

with a negligible surface the domains decorated by a propagation vector( 1
2

1
2 0) nearly

vanish. In the NiNb2O6 powder the magnetic order with a propagation vector(0 1
2 0)

seems to be of short range as indicated by the broadening of magnetic reflections for larger
22, indicating the small size of domains in this structure.

These niobates with columbite structure are comparable to FeC2O4·2D2O [16]. This
compound is characterized by a strong antiferromagnetic intrachain and weaker interchain
coupling, which exhibits two types of stacking. But in FeC2O4·2D2O with TN = 11.7 K the
ordered moments switch partially atT2 = 9.5 K to the other structure, perhaps because of
magnetoelastic interaction. In FeNb2O6 and NiNb2O6 the structures of the two propagation
vectors order at the same temperature, and the powder diffraction measurements at different
temperatures show no change of the ratio between the two domains.
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Figure 11. Magnetic entropy of NiNb2O6 obtained by numerical integration. The solid line
gives the theoretical prediction for a ferromagnetic Heisenberg chain with single-ion anisotropy.

The dominant role of the intrachain coupling in NiNb2O6 is also deduced from the
specific heat data measured on a single crystal (figure 4). We estimate the specific heat of the
non-magnetic isostructural ZnNb2O6 to be a good approximation of the lattice contribution in
NiNb2O6. So the magnetic part of the specific heat was obtained by subtracting the ZnNb2O6

specific heat as measured by Hanawaet al [17]. The long tail of the magnetic specific
heat aboveTN reveals the presence of short-range magnetic correlations characteristic for
low-dimensional magnetic behaviour. Figure 11 shows that the entropy of anS = 1

2 ion is
reached at 10 K and therefore single-ion anisotropy is not very strong. Therefore theoretical
predictions for a ferromagneticS = 1 chain with isotropic exchange coupling and uniaxial
single-ion anisotropy [18] were fitted to the specific heat data. As a linear chain shows
no three-dimensional ordering, only data between 10 K and 25 K were taken into account
to describe the effect of short-range magnetic correlations aboveTN . The important role
of short-range magnetic correlations is emphasized by the fact that up toTN only 25% of
the entropy is acquired. The best agreement was obtained with the exchange parameter
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J = 14.8 K and the single-site anisotropyD = −5.2 K. In the high-temperature region
the magnetic entropy fits well to the theoretical prediction. TheS = 1 triplet ground state,
usually observed for a 3d8 ion in an octahedral symmetry, is therefore split by a crystal
field of lower symmetry into a singlet and a ground doublet. The interchain interactions
responsible for the three-dimensional ordering in the compound are weaker and can be
estimated [19] usingTN . Depending on the degree of anisotropy the interchain exchange
parameter yieldsJ ′ = 0.01 K to 2.1 K corresponding to the limiting cases of an Ising or
classical spin system.

4. Analysis

In previous publications analyses of the magnetic susceptibilities of FeNb2O6 [7] and
NiNb2O6 [8] based on effective spin Hamiltonians were reported. A collinear magnetic
structure was assumed, especially for NiNb2O6, in contrast to our neutron diffraction results.
However, the new neutron diffraction results show that single-ion anisotropy exists and
has a non-negligible influence causing a canting angle and an obvious unquenched orbital
momentum. Based on these results a more detailed analysis taking into account the degrees
of freedom in orbital angular momentum is presented.

According to Hund’s rules the 3d6 electron configuration of Fe2+ results in a5D ground
state. The first excited state4P is separated by∼30 000 cm−1 and can therefore be neglected
[20]. The 5D free-ion ground state of Fe2+ splits into an orbital triplet5T2g and an orbital
singlet 5Eg in a crystal field of cubic symmetry. The triplet (5T2g) is of lowest energy.
Within this triplet the splitting is of the order of 1000 cm−1 so the other orbital states do not
contribute to magnetic properties significantly. The lowest triplet is therefore an adequate
approximation for the calculations, spanned by

ψ1 =
√

15yz ψ2 =
√

15xz ψ3 =
√

15xy.

These functions transform under rotation like those of the orbital angular momentum with
L = 1:

Lx = κ

( 0 0 0
0 0 i
0 −i 0

)
Ly = κ

( 0 0 −i
0 0 0
i 0 0

)
Lz = κ

( 0 i 0
−i 0 0
0 0 0

)
.

The covalency factorκ reflects the influence of higher states whose effects are assumed to
be isotropic [20]. In a first step this parameter was fixed to 1. It is a suitable test for the
restriction to the lower triplet.

In NiNb2O6 the situation is more complicated. The free-ion ground state3F splits in a
crystal field of cubic symmetry into two triplets3T1g, 3T2g and a low-lying orbital singlet
3A2g. But also an orbital singlet1Eg of the next excited free-ion state1D can be of similar
energy to the3T2g state [21]. We will restrict consideration to the ground singlet3A2g and
the triplet 3T2g to reproduce an anisotropy of orthorhombic symmetry. The basis functions
are

χ =
√

105xyz ψ1 = 1

2

√
105x(y2 − z2)

ψ2 = 1

2

√
105y(z2 − x2) ψ3 = 1

2

√
105z(x2 − y2).
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The matrix elements of the orbital momentum operator for these functions are

Lx =


0 2i 0 0

−2i 0 0 0
0 0 0 −i/2
0 0 i/2 0



Ly =


0 0 2i 0
0 0 0 i/2

−2i 0 0 0
0 −i/2 0 0



Lz =


0 0 0 2i
0 0 −i/2 0
0 i/2 0 0

−2i 0 0 0

 .
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Figure 12. Local principal axesxi , yi , zi of the g-
tensor of the magnetic ions occupying the two types of
magnetically non-equivalent site in MNb2O6 (M = Fe,
Ni). a, b andc are the crystallographic axes.

Figure 13. Indexed magnetic ions in the chemical unit
cell.

As the M2+ ion is situated on a twofold axis along [010], the crystal-field Hamiltonian
can be written as

Hcrystal field = B0
2O0

2 + B1
2O1

2 + B2
2O2

2 + B0
4O0

4 + B1
4O1

4 + B2
4O2

4 + B3
4O3

4 + B4
4O4

4

by the use of Stevens operators. No operator mixesψ2 with ψ1 or ψ3, but ψ1 and ψ3
can be mixed. Instead of using a mixing parameter, we introduce a principal-axes system,
which is related to the crystal axes system by a rotation around theb-axis at each magnetic
site, as shown in figure 12. Only three parameters are needed instead of eight in the
general case to describe the effects of a crystal field in the case of FeNb2O6. These are
E(ψ2) − E(ψ1), E(ψ3) − E(ψ1) andφ for the transformation angle between the principal-
axes and crystal axes systems. In the case of NiNb2O6 two additional parameters are
required. These areE(ψ1) − E(χ) and δ for the mixing betweenψ2 andχ . The crystal-
field eigenstates become

χ ′ = cos(δ)χ − sin(δ)ψ2 ψ′
2 = sin(δ)χ + cos(δ)ψ2.

ThusHcrystal field is no longer diagonal in the principal-axes system:

H Ni2+
crystal field =


sin(δ)2E(ψ2) 0 sin(δ) cos(δ)E(ψ2) 0

0 E(ψ1) 0 0
sin(δ) cos(δ)E(ψ2) 0 cos(δ)2E(ψ2) 0

0 0 0 E(ψ3)

 .



10622 C Heid et al

The full Hamiltonian can be taken as

H = Hcrystal field+ Hspin–orbit+ Hexchange+ Hmagnetic dipole–dipole+ HZeeman.

With the standard representation for the spin quantized in the principal-axes system as well
we have

Hspin–orbit = λL · S.

In a free Fe2+ ion the spin–orbit coupling constant isλ = −103 cm−1 [20], and it is
λ = −324 cm−1 for a Ni2+ ion [21]. The absolute value ofλ can be slightly decreased
under the action of a crystal field. The Zeeman term is given by

HZeeman= −µB(2S + L) · Hext

and the two many-particle interactions will be treated in the mean-field approximation:

Hexchange= −
∑
〈i,j〉

JijSi〈·Sj 〉T

and

Hmagnetic dipole–dipole= 1

4πµ0

∑
〈i,j〉

(
µi · 〈µj 〉

r3
ij

− 3
(µi · rij )(〈µj 〉 · rij )

r5
ij

)
.

In calculating these two terms we applied the translational symmetry of the magnetic
structure which is the same for the observed magnetic domains. Structural data are taken
from tables 1 and 2. The model parameters are the intrachain exchangeJ0 (=J12), the
interchain exchange to the four neighbour chains in the next layers in thea-direction
J1 (=J13 + J14 = J23 + J24) and the interchain exchange to the next two chains in the
same layer in theb-directionJ2 (=J11′ + J12′ = J21′ + J22′) with respect to the notation of
the ions as given in figures 10 and 13. This simplification is justified by the weak interchain
exchange as explained above.

The iteration is started with a randomly chosen set of parameters. All of the calculations
were carried out in the principal-axes system. After diagonalization of the Hamiltonian the
thermal expectation values were calculated and reinjected into the iteration. This procedure
was repeated until self-consistency was achieved.

In order to determine the model parameters the following experimental data have been
used.

(i) The susceptibilities with an external field applied along one of the crystal axesa, b

and c in the temperature range from 30 to 300 K. Above 30 K the susceptibility obeys a
Curie–Weiss law.

(ii) The magnetization in the ordered state with an external field applied along thea-
or c-axis at 2 K in the field range from 1 to 5 T.

From our data we conclude that for both compounds for two directions of the applied
external field,a and c, a field-induced transition to the paramagnetic state takes place.
The critical field strengths at 2.0 K areHa

cr = 9.0 kOe andHc
cr = 18.5 kOe for FeNb2O6

and Ha
cr = 27.8 kOe andHc

cr = 10.5 kOe for NiNb2O6. The magnetic structure of the
antiferromagnetic phase and the simulated structures of the high-field states are shown in
figure 14. In the high-field state the spin configurations can be assigned asFxCz for the field
applied along thea-direction, andCxFz for the field applied along thec-direction, where
the propagation vectors are (0 0 0) in any case. Thus the ferromagnetic chain structures
along thec-direction are preserved. Effective exchange interactions were sufficient for the
description of the observed phase transitions.



Magnetism in FeNb2O6 and NiNb2O6 10623

a)

a

c

b

a

b

c

b)

a

b

c

c)

Figure 14. Magnetic structures in the case of FeNb2O6 for (a) the antiferromagnetic phase, (b)
the high-field state with a field applied along thec-axis and (c) with a field applied along the
a-axis. All of the magnetic moments lie in thea–c plane.

Table 6. Physical parameters for the best agreement for FeNb2O6 and NiNb2O6.

Parameter FeNb2O6 NiNb2O6

λ −99 cm−1 −208 cm−1

E(ψ2) − E(ψ1) 182 cm−1 −187 cm−1

E(ψ3) − E(ψ1) 540 cm−1 −408 cm−1

E(ψ1) − E(χ) 4972 cm−1

δ 0.01
φ 65.9◦ 39.2◦
J0 1.76 K 9.86 K
J1 −0.095 K −0.43 K
J2 −0.62 K −1.07 K

The best agreement with our data was found for the parameters given in table 6. The
deviation of the covalency factorκ, introduced for the Fe2+ ion, is less than 5% and therefore
not significant. The results of the refinement are displayed in figures 5–8.

As usual in mean-field calculations the Néel temperatures are higher than the
experimental values. They were not included into the refinement and give 16.2 K for
FeNb2O6 and 15.6 K for NiNb2O6. For FeNb2O6 the anisotropy can be expressed in the
principal-axes system [22] as:Dxx = 0, Dyy = −18 cm−1, and Dzz = −54 cm−1 or
gxx = 2.0, gyy = 2.37, andgzz = 3.09. This reveals a strong uniaxial anisotropy and
a quasi-Ising character for the spin system. The simulation gives a value of 4.5µB for
the fully ordered magnetic moment and a canting angle of 24.2◦ to the a-axis in good
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agreement with the neutron diffraction results. For NiNb2O6 we foundDxx = −34.7 cm−1,
Dyy = −36.1 cm−1, andDzz = −37.8 cm−1 or gxx = 2.33,gyy = 2.35, andgzz = 2.36 and
thus a much weaker anisotropy. The ordered magnetic moment was 2.3µB , and a canting
angle of 36.4◦ to thec-axis compared with 31◦ from neutron diffraction was obtained. The
agreement with the specific heat data is satisfying, where we obtainedJ = 14.8 K and
D = −5.2 K as compared toJ0 = 9.9 K andDzz − Dxx = −4.5 K in our analysis.

Deviations of the magnetization curves from the experimental findings might be due to
the fact that we employed effective exchange interactions. Thus the ions in one zigzag chain
can be treated as equal, but in general exchange from one ion in one chain to members in
another chain may be different giving rise to an additional spin deviation between spins in
one chain. This effect should be more important in NiNb2O6 than in FeNb2O6 because the
single-ion anisotropy is weaker there. A strong anisotropy fixes the moments in one direction
which is the same for all ions in one zigzag chain. Nevertheless the neutron diffraction
results give no evidence of an additionalGxAz-component to theFxCz-configuration [5]
for NiNb2O6 as well as for FeNb2O6.

5. Conclusion

From neutron diffraction experiments we were able to determine the magnetic structures
of FeNb2O6 and NiNb2O6. The two compounds order in the same type of magnetic
structure, where due to frustration three domain types can exist and give rise to two different
propagation vectors. This model was confirmed for FeNb2O6 by a Mössbauer experiment
and does also agree with group theory.

We have shown that the magnetic behaviour of FeNb2O6 and NiNb2O6 can be well
explained in mean-field approximation in the ordered and the paramagnetic state. Neutron
diffraction results were not used, but agree with structures obtained using the model
mentioned and a parameter set satisfying the magnetization data. In both cases an
orthorhombic anisotropy was found, which is weaker in NiNb2O6. Even if the high-
temperature paramagnetic susceptibility of NiNb2O6 single crystals exhibits no pronounced
anisotropy, magnetization measurements and neutron diffraction studies at low temperatures
show that the influence of single-ion anisotropy cannot be neglected.

The crystal-field levels of Fe2+ in FeNb2O6 are found to be different from those obtained
by Yaegeret al [8] and Eibscḧutz et al [23]. Agreement was only found as regards the fact
that the lowest-lying triplet5T2g is well separated from the higher levels, and therefore
population of higher levels can be neglected at sufficiently low temperatures. As the
magnetization in the high-field state is very well simulated, we place reliance on our results
rather than on results obtained only from susceptibility data. In NiNb2O6 only the splitting
of the crystal-field ground term can be given with good accuracy. From the relatively weak
anisotropy in the magnetization at high temperatures it is hardly possible to obtain reliable
values for the spin–orbit coupling constant and the overall splitting of the orbital triplet
3T2g and singlet3A2g, or to decide whether the orbital singlet1Eg is involved or not. The
Ni2+ level scheme could be better checked by optical methods. Nevertheless the higher
crystal-field levels seem to be well separated from the orbital ground singlet.

The ordered magnetic moments of both compounds lie in thea–c plane on either side of
the crystallographicz-axis following the local easy axis of the ion. The simulated ordered
magnetic moments agree very well with our experimental results. Deviations are within
experimental errors.

In both compounds the ferromagnetic superexchange in the chains along thec-direction
is the strongest interaction. The interchain exchange interaction was found to be smaller
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and antiferromagnetic. This results in a low-dimensional behaviour that was observed
for example in the specific heat experiment on NiNb2O6. A specific heat experiment
on FeNb2O6 should also reveal a similar effect but with a more pronounced Ising-like
behaviour. However, the decrease of dimensionality should not be as strong as in the
isostructural compound CoNb2O6, as was observed by Hanawaet al [17]; an estimation of
the interchain exchange parameters in this compound was given in a previous publication [5].
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